Advanced-Multi-Step and Economically Oriented Nonlinear Model Predictive Control

نویسندگان

  • Xue Yang
  • Nikolaos Sahinidis
  • Rui Huang
  • Johannes Jäschke
  • Eranda Harinath
چکیده

This dissertation addresses two issues that arise in the field of Nonlinear Model Predictive Control (NMPC): computational delay and stability of economically oriented NMPC. NMPC has gained wide attention through the application of dynamic optimization. It has the ability to handle variable bounds and multi-input-multi-output systems. However, computational delay caused by large size of nonlinear programming (NLP) problems may lead to deterioration of controller performance and system stability. In this thesis we propose an advanced-multi-step formulation of NMPC (amsNMPC) based on NLP sensitivity. The basic idea of amsNMPC is to solve a background NLP problem in advance to get predictions of future manipulated variables. These are then updated online using NLP sensitivity when the actual states are obtained. This method could be applied to optimization problems whose solutions require multiple sampling times. We then analyze the nominal and robust stabilities of the two approaches. Two examples are studied to evaluate the performance of amsNMPC. The ultimate goal of any operation strategy for a process plant is to make profit. Traditionally this goal could be achieved by a two-layer Real-time Optimization (RTO) system, where the upper layer solves a steady state problem aiming at optimizing economic performance to get the optimal setpoints for the controlled variables in the layer below. The lower layer then keeps the controlled variables at their given setpoints using MPC/NMPC. However, there are some problems with this two-layer structure. One of the solutions is to combine these two layers and include the economic criterion directly into the cost function of the lower layer controller when an optimization-based controller such as MPC is used. This approach is often referred to as Economic MPC. The issue with Economic NMPC is that the controller may not be stable. In this dissertation we analyze its Lyapunov stability property and propose to stabilize it by adding quadratic regularization terms to the objective function, and we also provide a method to calculate the most appropriate weights on regularization terms to ensure the stability of Economic NMPC while achieving the best possible economic performance. Several challenging case studies are used to demonstrate these concepts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Model Predictive Control and Dynamic Real Time Optimization for Large-scale Processes

This dissertation addresses some of the theoretical and practical issues in optimized operations in the process industry. The current state-of-art is to decompose the optimization into the so-called two-layered structure, including real time optimization (RTO) and advanced control. Due to model discrepancy and inconsistent time scales in different layers, this structure may render suboptimal so...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Advanced-multi-step Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) has gained wide attention through the application of dynamic optimization. However, this approach is susceptible to computational delay, especially if the optimization problem cannot be solved within one sampling time. In this paper we propose an advanced-multi-step NMPC (amsNMPC) method based on nonlinear programming (NLP) and NLP sensitivity. This met...

متن کامل

A New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme

A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016